进入高中以后,学生的学习压力就会越来越大,高中三年就是为了高考而做准备。高中的数学知识相对来说会越来越难,同学们要想提高高中数学的学习效率,一定要掌握学习的方法。除了课堂上学习的知识,还要增加大量的练习。下面是沪江小编给大家整理的关于函数的知识点和应用,大家可以相互学习一下。

  1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

  2、用函数解应用题的基本步骤是:

  (1)阅读并且理解题意. (关键是数据、字母的实际意义);

  (2)设量建模;

  (3)求解函数模型;

  (4)简要回答实际问题。

  常见考法:

  本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

  误区提醒:

  1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

  2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

  【典型例题】

  例1:

  (1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利).

  (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式.如果存入本金1 000元,每期利率2.25%,试计算5期后的本利和是多少? 解: (1)利息=本金×月利率×月数. y=100+100×0.36%·x=100+0.36x,当x=5时,y=101.8,∴5个月后的本息和为101.8元.

  例2:

  某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

  (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。

  (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得最大利润,其最大利润约为多少万元。(精确到1万元)。

  数学作为理科知识,是我们学习的重中之重。要想学好数学,课堂上一定要认真听课做笔记,对于重点难点要着重练习。课后的练习要到位,多做题才能巩固学过的知识,丰富自己的解题经验对以后的高考能起到很大帮助。以上就是小编整理的知识点,希望可以帮助大家。